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Abstract 
 
In this research work we comparing the performance with the 
family of blind equalization. These algorithms are CMA, 
Godard and FrCMA using adaptive filters. We are varying the 
Signal to Noise Ratio (SNR), convergence factor (step size) μ 
relatively in different algorithms. The MATLAB tool results 
exhibits that different algorithms perform different with the 
same transmitted bits along with noisy environment all 
algorithms. In blind algorithms no pilot transmitted signal 
required. There are some difficulties also occur like complexity 
of the system and cost function. Similarly, the benefit like 
reduction of the SNR, Intersymbol interference(ISI) and fast 
convergence also achieved in simulation results. The fractional 
order MMA algorithms generate improved results which is 
used in 5G networks, code is general and inevitable need of the 
current era. The Fractional order Constant Modulus algorithms 
give improved results like fast convergence as well as steady 
state condition. FrCMA algorithms is a new approach for 
practical, general application of the data and wireless 
communication. 
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1. Introduction 
 
Equalization is the fundamental part of the cable base or 
wireless communication.  The conventional Blind equalization 
algorithm used to Minimize Mean Square Error (MMSE) and 
detecting of the transmitted signal with the absence of additive 
and multiplicative noise. In this method Constant Modulus 
algorithm with a special case of the Multi Modulus Algorithm 
mostly used. [1] Similarly, channel equalization operates 
without transmitting reference signal using blind equalization 
algorithms. It bases on the probabilistic and stochastics 
properties of the transmitting signal. In this paper we discuss 
Blind adaptive filtering algorithms like Godard, CMA, MMA, 
FrCM Algorithms. [2]Moreover, we use three-taps impulse 
using flat frequency response. The objective function of the 
analysis must be minimization of MSE and combat of the 
additive White Gaussian noise (AWGN), Intersymbol 
Interference (ISI), fading. [3] ISI is a multiplicative noise, 
distortion in the transmitted signal due to multi path loss 

(Echo). By varying Signal to Noise Ratio (SNR) and 
convergence factor we improve the fast convergence using 
algorithms. The comparative simulation results of the 
algorithms depict in the graphs. [4] We take different taps for 
frequency selective and flat channels with varying convergence 
factor, SNR using 4 Quadrature Amplitude Modulation 
(4QAM) scheme. [5]The channel impairments in digital 
communication reduce the power of the transmitted signal due 
to line fading, Intersymbol Interference (ISI), Gaussian noise. 
[6] Actually multi transmission produce fading which lead the 
ISI in data communication. Further some duplicate copies of 
the original transmitted signal occur in output sides show in 
figure 2.[7] In linear channel produce ISI which a problem for 
the receiver to receive the transmitted signal. Therefore, blind 
equalization adaptive filter detects the ISI channel impairment 
in digital communication. [8] The ISI is a multiplicative noise 
in wireless communication system. There is a delay version of 
the transmitted signal received in the output side, which is lead 
to noise and mitigate the power of the required signal in the 
output side [10]. The figure1 denotes the ISI impairment in 
detail. For the purpose to reduce the chance of making an 
error the receiver will often employ an equalizer in order to 
reduce the effects of channel distortion. The dispersion causes 
a distortion of the pulse shape, there neighboring pulses to 
interfere with each other, resulting in an effect known as inter-
symbol interference. [11] We transmit 200 bit in a channel and 
results take after 5000 iteration using Godard, CMA, FrCMA 
algorithms. The modulation scheme uses 4 Quadrature 
Amplitude Modulation (4QAM) and Phase shift keying for all 
algorithms. Therefore, using Reimann-Livolle (RL) derivation 
for the cost function parameters values. [12] The final results 
demonstrate that the fractional order CMA techniques 
generate minimum MSE, SNR and ISI. It concludes that 
simulation results show fast convergence and fast steady state 
condition. [13] 

The basic channel equalization block diagram shown in figure 
1.In this figure input transmitted signal denoted by x(k), 
channel impulse response by h(k), Additive  white Gaussian 
noise n(k),y(k) use for output signal, e(k) for error signal, d(k) 
for desired signal. Similarly, e(k)= d(k) – y(k). Whenever e(k) 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 10, Issue 3, March-2019                                                                    1132 
ISSN 2229-5518  

IJSER © 2019 
http://www.ijser.org 

equal to desire signal d(k) it will be considered ideal case which 
is free from multiplicative and additive noise. In assume 
parameters k denote for iteration number [14]. 

Figure 1. Channel equalization Block Diagram 

The remaining section of the paper consist of Literature 
review, Problem statement, channel equalization, 
mathematical derivation in algorithms, Simulation results, 
conclusion and references. 

2. Literature Review 
The algorithms like Least Mean Square (LMS), Normalized 
Least Mean Square (NLMS), Recursive Least Square (RLS) 
are traditional base algorithms. These algorithms are based on 
the reference transmitted signal. Therefore, the training signal 
is compulsory in the above mention algorithms. Now we 
discuss the concept of blind equalization where no reference 
signal is required. The probabilistic and statistical properties of 
the transmitted signal use to recover the transmitted signal with 
the absence of the training signal. [14] 

In blind equalization techniques no reference or training signal 
required in digital communication. Actually, algorithms like 
CMA, Godard, Sato and FrCMA use the existing stochastic 
properties of   the transmitted signal utilized for the detecting 
the transmitted signal. There are two types of equalizer such as 
static equalizer and adaptive equalizer. The static equalizer is 
compromise in efficiency and reliability. Owing to simplicity 
and less complexity is a positive aspect of the static equalizer. 
It is very hardship to make an equalizer which is work out 
without knowing transfer function and impulse response of the 
flat channel response. In adaptive filter equalizer transfer 
function of the three impulse response automatically adjusted 
to the selected algorithms. The utmost flavor of the adaptive 
filter is furnishing the deficiency of the static equalizer. [15] 

3 Model of the Channel equalization and 
Methodology 
 In figure 1 Channel equalization block diagram consist of the 
input signal, Additive white Gaussian Noise (AWGN), 
multiplicative noise ISI desired signal, error, delay version of 
the signal, output signal 

The input x (k) convolve to the channel impulse response  

h(k) and add some additive noise n(k). Therefore, output 

y(k) is a delay version of the input signal. 

Y(k)=x(k)h(k)+n(k)           (1) 

The output is always equal to the convolution of the input 
signal and impulse response along with additive noise as 
shown in equation 1 

The impulse response equation along with additive noise as 
follow 

Y= hxT+n                                                                            (2)  

Where in equation (2) (.)T use for transpose  

h =h(x)+g                                                                         (3) 

The input vector matrix  

x= [x(n) x(n-1) x(n-2)]T                                                                             (4) 

The impulse response is  

h=h0 +h1 Z-1 +h2 Z-2(5) 

when we substitution of the equation (4) and equation (5) 
the new equation as follow  

Y=h0 x(n)+h1 x(n-1) +h2x(n-2) + n                                  (7) 

3.1 Godard Algorithm 

The basic   objective of the Godard algorithm is to mitigate 
the cost function as follow 

|𝜺𝜺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 |𝑚𝑚𝑚𝑚𝑚𝑚=|Ε[(|w(k)x(k)-rq)]|𝑚𝑚𝑚𝑚𝑚𝑚   (8) 

𝜺𝜺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =E[𝑒𝑒𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑝𝑝 (k)]                                (9) 

In equation 8 Godard cost function equal to the difference 
of the convolution y(k) of the weight w(k), and input 
signal x(k)) and constant value 

Where 𝜺𝜺Godard objective function of the Godard algorithm, E 
for expectation, rq  denote level in Godard algorithm, q is a 
positive integer. Godard algorithm use for high order   
statistic of the constellation implementation which is an 
improve mechanism for research. [16] 

In Equation 8, E represents mean value of Godard 
algorithm, w represents Matrix of weighted values, x is the 
matrix of the input values, while k is used for   vector 
values of initialization time. I used 0,1,2… for initial values 
of K iteratively. 

We can assume y(k) as        k=0,1, 2,…..k   

                                  y(k)=wH(k)x(k)                    (10) 

In equation 10 w denote weight, x(k) input signal, (.)T use 
for transpose, y(k) received signal             

                  𝜺𝜺Godard=E[(|y(k)|q-rq)p]                                    (11)       

In equation 11 p, q are positive integers in Godard 
algorithm, rq  is constant value for constellation diagram,            
𝜺𝜺Godard     denotes Godard cost function 

When we put value q and p both equal to 2 in equation 
(11) 

                       𝜺𝜺Godar=E[(y(k)|2-rq)2                                (12) 

In equation 12 square open of the cost function and put q 
= 2    as follow  

             𝜺𝜺Godard=E[(y(k)|4-2E[|y(k)|2r2+r22]                      (13) 
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In equation 12   E is    use    for required expected   mean 
values  

Initialization of the Godard algorithm assume for the 
experimental research. The random  

The stochastic gradient equation of the Godard algorithm 
as follow taking derivative with respect to weight of 
Godard cost function equation 2.7 using chain rule 

 ( 𝐺𝐺
𝐺𝐺𝑑𝑑

(𝑢𝑢𝑢𝑢) = 𝑢𝑢𝑢𝑢𝑣̧̧ +v𝑢𝑢𝑣̧) 

𝐺𝐺
𝐺𝐺𝑑𝑑

(|y(k)|q-rq)p= p ǀ(y(x)ǀq-γq )ǀp-1 𝐺𝐺
𝐺𝐺𝑑𝑑

(ǀy(k)ǀq) 

                     = p ǀ(y(x)ǀq-γq )ǀp-1 q(ǀy(k)ǀq-1) 𝐺𝐺
𝐺𝐺𝑑𝑑

(wH(k)x(k) -
γq) 

                        put   y(k)= wH(k)x(k) 

                      =pq(ǀ𝑦𝑦(x)ǀq -γq )ǀp-1ǀy(k)ǀq-1)x(k) 

𝐺𝐺
𝐺𝐺𝑑𝑑

(|y(k)|q-rq)p=pq(ǀ𝑦𝑦(x)ǀq -γq )ǀp-1ǀy(k)ǀq-2) y*(k)x(k)  (14) 

The modified Godard equation after differentiating the 
objective function equation 14 

   w(k+1)=w(k)-1
2
μpq|y(k)|q-γq)p-1|y(k)q-2y*(k)x(k)             

(15) 

   w(k)=w(k-1)-1
2
μpq|y(k)|q-γq)p-1|y(k)q-2y*(k)x(k)               

(16) 

The equation 16 substitute with  the equation 12 

    w(k) =w (k-1)-1
2
μpqep-1Godard (k)|y(k)|q-2y*(k) x(k)         

(17) 

put p=2 , q=1 in equation 16  updated form of Godard 
(CMA) we get  

      w(k+1)=w(k)-μ|y(k)|-1-γ1)-1|y(k)-1y*(k)x(k)                   
(18) 

Now put p=2  and q=2  in equation 15 we get equivalent 
equation of the  Godard (CMA) algorithm  

        w(k+1)=w(k)-2μ|y(k)|2-γ2)1|y*(k)x(k)                       
(19) 

3.2 Constant Modulus Algorithm (CMA) 

In blind adaptive equalization method CMA algorithm 
reduce the distance between equalizer output and some 
constant.  CMA algorithms also a training less algorithm like 
MMA and special family of blind adaptive equalization 
algorithms. In objective function equation of CMA 
algorithm s(t) used for transmitting signal, J for channel 
delay time, C denote constellation set, h for impulse 
response 

       x(k+J)=s(k)h(J)+�∑ 𝑠𝑠(𝑙𝑙)ℎ(𝑘𝑘 + 𝐽𝐽 − 𝑙𝑙)𝑘𝑘+𝑗𝑗
𝑙𝑙=∞ �+n(k+J)      

(20) 

The   cost function of the   Sato   algorithm as follow  

𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶  (k)   =E[(y(k)|2 -rq) 

where 𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶 constant modulus algorithm cost function 
equal to y(k)|2 -  γ 2 | the new CMA algorithm equation as 
follow 

                         w(k+1)=w(k)-2μ𝑒𝑒𝐶𝐶𝐶𝐶𝐶𝐶y*(k)x(k)               (21) 

In CMA algorithm where y(k)= wH(k)x(k), y(k) use for 
output signal, x(k) for input signal and k ≥ 0 and x(0)= 
w(0) represent  random vectors in equations. 

3.3    Multi- Modulus Algorithm (MMA) 

Multi-Modulus algorithm is a traditional blind equalization 
algorithm. This algorithm has some deficiency like slow 
convergence in high order modulation channel like 
4QAM,16QAM, 64QAM.Moreover MMA algorithm ISI rate is 
greater as compared to proposed Fractional order CMA 
algorithm. For reduction of steady state mis adjustment as 
well as bit error rate we use a modified algorithm Godard 
(CMA) , FrCMA varying the values of parameters q and p. 
The tab weights in next chapters control the intensity of 
noise in the output side of the equalizer. The tab weights 
are frequently reduced according to the output (cost) 
function. Similarly, the output function of the MMA written 
in form of real (R) and imaginary (I) in equation form as 
follow 

                €MMA=€R(n)+€I(n)                                       (21) 

In equation 21 € denote cost function, and R , I use for real 
and imaginary values simultaneously 

Thus  

                  €MMA=E{[|yr(n)-cq)|}+E{[yi(n)|2-cq]2}         (22) 

Equation 22, cqdenote constellation level in blind 
equalization CMA algorithms, E denote mean value, y(n) 
output signal  

The weighted tab equation of the MMA algorithm as follow 

                    w(k+1)=w(k)–μ.e(n)y(n)                               (23) 

In equation 23       e(n) = er(n) + iei(n) 

In Equation 23 μ use for convergence factor , e(n) error 
signal,  and  y(n)  for   output signal               

3.4   FRACTIONAL ORDER CMA 

The output signal denoted by y(k), channel finite impulse 
response assume h=[h(k),h(k-1),……..x(k-N+1)]T  where 
(.)T  express transpose k assume symbol, and k-1 assume 
previous symbol. These symbols in transmission channel 
also cause of Intersymbol Interference which is 
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multiplicative noise. For the elimination of AWGN noise and 
ISI I will design a blind equalizer of N weights w=[w(k), 
w(k-1),……..w(k-S+1)]T  for the purpose  of mitigation of 
the  Mean Square Error(MSE)   using fractional order 
Godard  algorithm cost function. Assume parameter € 
denote cost function as  

                 €= E[(ǀy(n)ǀ2  -cq)p]                                       (24)                                                                     

In equation 24 cq use for constellation level constant, p and 
q are parameters of fractional order CMA algorithm, where 
y(k)= wT(k)x(k), (.)T define Hermitian transpose 

cq= 𝐸𝐸[|𝑠𝑠(𝑘𝑘)|2𝑞𝑞]
𝐸𝐸[|𝑠𝑠(𝑘𝑘)|𝑞𝑞]

   (25)                                                                           

Proposed Fractional order CMA algorithm is the 
combination of the conventional Godard and fractional 
Godard CMA with varying parameters with case 1 and case 
2  p,q (2,2) , p,q (2,1)       

                w (k)= wg(k) + wf (k)                                                        (26) 

In equation (26)   wg(k) denote Godard algorithm weights, 
wf (k)  use for fractional algorithm weights. The Godard 
(CMA) algorithms after derivation with respect to w   of the 
cost function incorporating equation (11) and (14) can be 
simplified is as follow: assume γq= Cq 

wg(k)=w(k-1)-1 
2

μpq(ǀ𝑦𝑦(x)ǀq -Cq)ǀp-1ǀy(k)ǀq-2)y*(k)x(k)    
(27) 

In equation 27 (.)* express complex conjugate, μ for step 
index, p and q are Godard (CMA) algorithm varying 
parameters, y(x) show output signal, x(n) input signal. Now 
we use the fractional order CMA algorithms to reduce the 
ISI and improve convergence rate. Therefore, we simplify 
the Reimann-Livolle (RL) equation  

                     a D pt(t-a)u= Γ( u+1 )
Γ(u−p+1)

 (𝑡𝑡 − 𝑎𝑎)u-p                              (28) 

In equation 29 (p< 0, u> -1), a and t are lower and upper 
limit, p and u are varying parameters assume in RL 
derivative equation. Putting €  instead of cost function in 
place of t-a is as follow 

 

                   a D pt  (€)u = Γ( u+1 )
Γ(u−p+1)

 (€)u-p                                          (29) 

Assume p=u in equation 28 the new equation is 

                   a D ut  (€)p = Γ( p+1 )
Γ(p−u+1)

 (€)p-u                                      (30) 

Put the values of p= 1 in equation (30) 

                   a D ut  (€)= Γ( 1+1 )
Γ(1−u+1)

 (€)1-u                                          (31) 

                   a D ut  (€)= Γ( 2 )
Γ(2−u)

 (€)1-u                                               (32) 

and assume u> -1 for the convergence of the integral. 
Similarly, the function f(t) and fractional derivative 
combine equation is discussed  

aDu,xf(t) = 1
Γ(k−p) � 𝐺𝐺

𝐺𝐺𝑑𝑑
�k∫ (𝑡𝑡 − τ)𝑑𝑑

𝐺𝐺
k-p-1 f(τ)d(τ)          (33) 

where a and t is the limit of integration, f(t) = (€)p assume 
equal to the cost function of Godard fractional order 
algorithm in equation (11)  In equation  (33)  Γ (k-p-
1)=∫ 𝑒𝑒−𝑑𝑑∞

0 𝑡𝑡𝑧𝑧−𝑢𝑢dt 

and € is greater than o,  RL based fractional order 
derivative of fractional order u> -1  

The function is as follow [8], the modified fraction equation 

of equation (33) when f(t) = f(x) 

    aDu ,x f(x)=cDu ,x f(x)= 𝐺𝐺𝑚𝑚

𝐺𝐺𝑑𝑑𝑚𝑚 [ 1
Γ(p) ∫ (𝑥𝑥 − 𝑡𝑡)𝑝𝑝−𝑑𝑑 𝑑𝑑

0 f(t)dt ]      (35)                

The simplified form of the equation (35) is as follows; 

     aDu ,x f(x)= [ 1
Γ(1−u) ∫ 𝑓𝑓(𝑑𝑑)−𝑓𝑓(𝑑𝑑)

𝑢𝑢
𝑑𝑑

0 f(t) d(t)                          (36) 

In equation (36) :. x > 0, and n-1< u ≤ n 

Where u is fractional order and n is an integer. Therefore, we 

use Reimann-Livolle fractional equation;    

                   aDu ,t €𝑝𝑝  = 𝑝𝑝+1
(𝑝𝑝−𝑢𝑢+1)

€𝑢𝑢−𝑣𝑣                                                          (37) 

In equation (37) € express cost function of the fractional order 

CMA algorithm. We put p =1 the modified equation as;  

                        aDu t €𝑝𝑝  = 2
(2−𝑢𝑢)

€𝑢𝑢−𝑣𝑣                                                            (38) 

 The fraction equation is;  

                    wf  (k)= -μ𝑓𝑓Du(|𝑤𝑤𝐻𝐻(k)x(k)|                           (39) 

The derived form of fraction and conventional algorithm are; 

aDu ,t €𝑝𝑝   where cost function integral form is; 

           €=∫ 𝑒𝑒−𝑑𝑑∞
0  𝑡𝑡𝑧𝑧−𝑢𝑢 dt 

      €      = - 𝑡𝑡𝑧𝑧−𝑢𝑢(𝑒𝑒−∞   - 𝑒𝑒−0   ) =  𝑡𝑡𝑧𝑧−𝑢𝑢                           (40) 

In equation (36), f (t) assume €(𝑡𝑡)𝑧𝑧. In equation (40), 

fractional constant u must be greater than -1. Now applying 

fractional derivation in equation (36) with respect to weight; 
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                   0Du ,t €𝑧𝑧  =  
𝑧𝑧+1

(𝑧𝑧−𝑢𝑢+1) €𝑧𝑧−𝑢𝑢                                                       (41) 

Putting z = 1 in equation (41) 

                            0Du ,t €𝑧𝑧  =  
2

(2−𝑢𝑢) €1−𝑢𝑢                                                 (42) 

The cost function €(𝑡𝑡)𝑝𝑝 = 𝑓𝑓(𝑡𝑡)  the RL fraction equation 

equals 0Du ,t f(t) =  0Du ,t f(x)      

   0Du ,t f(t) = 1𝐺𝐺𝑛𝑛

Γ(n−u)𝐺𝐺𝑑𝑑𝑛𝑛  ∫ (𝑥𝑥 − 𝜏𝜏)𝑚𝑚−𝑢𝑢−1𝑑𝑑
𝐺𝐺  f(t) d(𝜏𝜏)         (43) 

For fractional using equation (40) assume z = p = 1  

              0Du ,t €𝑧𝑧 =  𝑧𝑧+1
𝑧𝑧−𝑢𝑢+1

  €𝑧𝑧−𝑢𝑢                            (44) 

The simplified form of equation (44) is as follows; 

               0Du ,t €𝑧𝑧 =  2
2−𝑢𝑢

  €1−𝑢𝑢                               (45)    

Now weight of the fractional equation and cost equation 

derivative with respect to weight are represented as; 

  𝑤𝑤𝑓𝑓(k) = w (k-1) -µpq(|y(k)|q -𝑐𝑐𝑞𝑞)p-1|y(k)|q-2 y*(k)x(k)   (46) 

Equation (46)   𝑤𝑤𝑓𝑓(k) equals to -µ  0Du  y(k). The simplest 

form of equation (46) is as follows; 

        𝑤𝑤𝑓𝑓(k) = -µpq  0Du  |y(k)|q-2 y*(k)x(k)                      (47) 

Now we multiply equation (46) fraction simplified equation 

with equation (47) 

 𝑤𝑤𝑓𝑓(k) = -µpq (|y(k)|q -𝑐𝑐𝑞𝑞)p-1|y(k)|q-2 y© (k)x(k) 0Du              (48)                                          

Thus incorporating equations (45) and (48) 

𝑤𝑤𝑓𝑓(k) = -µpq (|y(k)|q -𝑐𝑐𝑞𝑞)p-1|y(k)|q-2 y© (k)x(k) * 2
2−𝑢𝑢

  €1−𝑢𝑢 (49) 

In equation (49) (©) is used for the multiplication of the 

fraction part. Further €1−𝑢𝑢 = 𝑤𝑤𝐺𝐺
1−𝑢𝑢 (k) is used for cost weight 

function of the Godard algorithm     

𝒘𝒘𝑓𝑓(k) = -µpq (|y(k)|q -𝑐𝑐𝑞𝑞)p-1|y(k)|q-2 y*(k)x(k)© 2
2−𝑢𝑢

  𝑤𝑤𝑓𝑓
1−𝑢𝑢  (50)                                        

We know that output equation equals y(k) = wH(k) x(k). Thus 

putting the algorithm parameters values of p and q in equation 

(50) i.e. p=2,q=1 for Godard CMA algorithm and p=q=2 for 

MMA algorithm, the derived equation (27) comes to (by using 

value convergence factor μ=0.5); 

  wG(k)=  – 0.5pq(ǀ𝑦𝑦(x)ǀq - Cq )ǀp-1 ǀy(k)ǀq-2) y*(k)  x(k)         (51) 

For fractional CMA put p=2, q=1 in equation (51) then the 

modified form along with RL fractional derivation is as 

follows; 

 𝒘𝒘𝑓𝑓(k) = -µ (|y(k)| -𝑐𝑐1)|y(k)|-1 y*(k)x(k)©
𝑑𝑑𝑓𝑓

1−𝑢𝑢

2−𝑢𝑢
 (k)              (52)    

Now the fractional simplified MMA equation using the 

parameters p = q = 2 is updated as equation (52);    

            𝒘𝒘𝑓𝑓(k) = -2µ (|y(k)|2 -𝑐𝑐2)|y(k)|y*(k)x(k)©
𝑑𝑑𝑓𝑓

1−𝑢𝑢

2−𝑢𝑢
 (k)   (53)   

Now we take Godard fraction derivative with respect to 

weight by putting in value of parameters p = 2, q = 2 on the 

base of equation (49)  

 𝒘𝒘𝐺𝐺(k) = -8µ (|y(k)|2-𝑐𝑐2)|y(k)|0 y*(k)x(k)©
𝑑𝑑𝑓𝑓

1−𝑢𝑢

2−𝑢𝑢
 (k)            (54) 

Now the Godard and fraction weight equation using equation 

(53) and (54)   w(k) =  𝒘𝒘𝐺𝐺(k) +   𝒘𝒘𝑓𝑓(k)  

  w (k) = -10µ (|y(k)|2-𝑐𝑐2)y*(k)x(k)© 2
2−𝑢𝑢

  𝑤𝑤𝐺𝐺
1−𝑢𝑢                (55) 

Now for simulation results constellation level constant is 

𝑐𝑐𝑞𝑞=𝑐𝑐1= √2   for q=1 and 𝑐𝑐2=2 for q=2 .Therefore we assume 

parameters p=1 , q = {1, 2} for QPSK modulation scheme 

using cost function of fundamental MSE equation 

                          MSE = E [ (|y(k)|2- 𝑐𝑐2)2]                           (56) 

The Godard MMA stochastic equation comes to;  

   w (k) = w(k-1) + μ1€𝐶𝐶𝐶𝐶𝐶𝐶 y*(k)x(k) + μ2€𝐶𝐶𝐶𝐶𝐶𝐶 y*(k)x(k) 

                         𝑑𝑑(𝑘𝑘)1−𝑢𝑢

Γ(2−u)
                                                           (57) 

In equation (48),  μ1, μ2 are step size parameters of the 

algorithm. Fraction CMA (2,1) and frMMA (2,2) can be 

summarized accordingly. The conventional CMA Godard uses 

the final update of the frCMA. In simulation, conventional 

CMA uses the fractional CMA iteration for modified results. 

The final weights is the sum of the Godard CMA and frCMA. 
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It is also noted that increasing fraction order (u) from 0 to 1, the 

convergence also enhances. In next chapter we will implement 

these algorithm parameters for improved simulation results 

[2,8,9]. 

4 Simulation Results 
 
In simulation results part we show comparative results of the 
same parameters of Godard CMA and FrCMA algorithms. I 
have tested two algorithms Godard CMA (2,2) and Fractional 
CMA (2,1) to test impact for noise cancellation using blind 
equalization.  For implementation I used MATLAB. I have 
used 4 Quadrature Amplitude Modulation (4QAM) for 
randomly generated data bits transmission. I have molded of 3 
tap case 1  for flat fading response of impulse channel  like  h= 
[ 0.7 + j0.2, 0.1-j0.02, -0.01-j0.001]. The quantity of equalizer 
used 3 tap along with delay 0. We took 400 symbols and 
simulate the results after 5000 iteration. The 200 symbols are 
transmitted for two algorithms. I took the convergence factor 
(step size) between 0 and 1 ( 0< 1 ) .  Signal to Noise Ratio 
(SNR) select 20, 25 dB for channel 1 flat fading channel. The 
values of parameters p and q =2 for channel1. The delay for 
chnnel1 is 0. The results analytically compare with respect to 
fast convergence and steady sate condition with proposed 
fractional order CMA algorithm.  
Similarly, we tested channel 2   as a frequency selective channel 
using 14-tab equalizer. The impulse response of channel 2 
(frequency selective channel) are h= [0.2231 -j*0.1745, -
0.0077 +j*0.00281,0.3312+j*0.4829, 0.1703 +j*0.0282,-
0.1024+j*0.1293,0.0743-j*0.0580,0.0070-j*0.0642, 0.0340-
j*0.0442,-0.0191+j*0.0023, 0.0060-j*0.0076, 
0.0035+j*0.0133, -0.0015-j*0.0067,0.0092-j*0.0045, -0.0022-
j*0.0003]; The frCMA algorithms parameters are fractional 
order μ, fractional step index μ f , step index  u range between 
1 and 0. In channel 2 a fix  SNR 30dB. The parameters p=2, 
and q=1 fix in channel2 with varying other parameters like 
fractional order, step index, fractional step index. 
 
4.1 Learning performance curves 
 

 

Figure 2:  Equalized signals for CMA, FrCMA algorithm 

using the first coefficient initialization. 

The output learning curve of the two algorithms disclose 
the convergence in two-dimensional graph. The horizontal 
line show x-axis for iterations and vertical line denote the 
Mean Square Error in range of 10-2 to 100.The receiver 
signals before equalization the horizontal line show in-
phase in range of -2 to 2. In the vertical line show the 
quadrature-phase in range of -2 to 2. 

 

Figure: 3 Equalized signals for CMA, FrCMA algorithm 

using the Second coefficient initialization  
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Figure 4: Equalized signals for the Weiner filter SNR 25dB 

 
 

 

Table 1: Comparative results of two algorithms on fix SNR 

30dB in figure (5) 

S/N Algorithm Iteration 
required for 
convergence 

Minimum 
MSE 

1 Standard 

CMA 

335 0.2122 

2 Fractional 

CMA 

183 0.1145 

3 Standard 

CMA 

106 4.087 x 10-1 

4 Fractional 

CMA 

10 8.81 x 10-2 

 

 

Figure 5: Learning curve for the CMA and FrCMA 

algorithm 

__________________________________________________ 

We generated a 200 bits random data along with uniform 
distribution and transmitted signal is distributed by the 
channel impairment, AWGN, ISI, fading and phase 
distortion. The Modulation scheme we used 4QAM samples 
for unitary power. Experimental initialization of standard 
CMA (Godard) and fractional order CMA algorithms. 

Impulse response h = [0.7 + j*0.2, 0.1-j*0.02, -0.01-
j*0.001]T 

And   additive white Gaussian noise with variance 10−2.5, 
mean μ =0, SNR =2 0dB and 25dB ,convergence factor 
0.005  we run the CMA(2,2) , Convergence factor assume  μ 
=0.2   , Now for FrCMA algorithm Convergence factor  
assume  0.005 along with SNR =20dB  ,u=0.2  , similarly the 
positive integer  parameters of the CMA(2,2) and 
FrCMA(2,2) algorithm assume p  = 2 and q  =  2,fractional 
variant u=0.005 SNR =25dB these algorithms are operate 
for 5000 time to achieve extreme correct simulation results 
for research. 

The input signals of the two algorithms CMA (2,2) 
Algorithm, FrCMA are the same. Figures 3, depicts first 
coefficient initialization in vertical line quadrature phase 
between -2 to +2 and horizontal line in phase also between 
-2 to +2.   

The figure 4 shows the second coefficient initialization in 
vertical line quadrature phase between -2 to +2, horizontal 
line in- phase between -2 to +2. The figure 4.3 represents 
the equalized signal of the wiener filter also exhibits in 
vertical line quadrature phase between +2 to -2 and 
horizontal line between -2 to +2.   We explore the input 
signals all SNR 20dB,25dB. 

Figure 6 exhibits the learning curve of the two algorithms 
after 5000 iteration K in horizontal line and vertical line 
show Mean Square Error between 10-2 and 100. 

Results of MSE produce linear in Figure 6 by applying 
varying SNR 20dB and 25dB. Similarly using fix 
convergence factor 0.2 and fractional convergence factor 
0.005, fractional order 0.2 fix. When transmitting power is 
kept 1 and noise power is taken 10^(-1)  for SNR 20dB 
.Moreover SNR 25 dB assume transmitting power 100 and 
noise power 10^(-0.5)  

It concludes that 20dB FrCMA results improved as compare 
to the results of the CMA algorithm using same parameters 
exhibits fast convergence figure 6. 

 

__________________________________________________ 
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In channel 2 we take fourteen-tab and test using 200 bits 
randomly. There are a uniform distribution and 
transmitted signal is distributed by the channel 
impairment, AWGN, ISI, fading and phase distortion. In 
fourteen-tab complex frequency selective channel2 we 
sustain SNR 30dB for standard CMA and FrCMA algorithm 
simultaneously. The Modulation scheme we used 4QAM 
samples for unitary power. Experimental initialization of 
standard CMA (Godard) and FRCMA algorithms. 

Impulse response h = [0.2231 -j*0.1745, -0.0077 
+j*0.00281,0.3312+j*0.4829, 0.1703 +j*0.0282, -
0.1024+j*0.1293,0.0743-j*0.0580,0.0070-j*0.0642, 
0.0340-j*0.0442, -0.0191+j*0.0023, 0.0060-j*0.0076, 
0.0035+j*0.0133, -0.0015-j*0.0067,0.0092-j*0.0045, -
0.0022-j*0.0003];T 

And   additive white Gaussian noise with variance 10−2.5, 
mean μ =0, SNR =30dB fix for CMA and FRCMA algorithm, 
convergence factor 0.379, fractional convergence factor 
0.379 and fractional order 0.9.  We run the CMA(2,2) , 
Convergence factor assume  μ =0.02   , Now for FrCMA 
algorithm Convergence factor  assume  0.002 and 0.01 
along with  fix SNR =30dB  ,u=0.2  , similarly the positive 
integer  parameters of the CMA(2,2) and FrCMA(2,2) 
algorithm assume p  = 2 and q  =  1,fractional variant 
u=0.02 and 0.9 these algorithms are operate for 5000 time 
to achieve extreme correct and improved simulation 
results for research . 

Figure 10 exhibits the learning curve of the two algorithms 
CMA and frCMA after 5000 iteration in horizontal line and 
vertical line show Mean Square Error (MSE) between 100 
and 10-2. 

Results of MSE produce different in two algorithms in 
Figure 10 by keeping fix SNR and varying convergence 
factor, fractional order, fractional convergence factor, delay 
and generate convergence in case 2. When transmitting 
power is kept 10 and noise power is taken 10-2. Further the 
tuning factor like convergence factor we keep different in 
algorithms CMA, frCMA algorithms 0.02, 0.379, 
respectively. Similarly, fractional constant values also 
different like 0.7 for CMA and 0.9 for frCMA algorithm. The 
algorithm parameters p and q must same as 2 in both 
algorithms. Filter order no denoted from N is one in both 
algorithms for fast convergence. 

It concludes that SNR 30dB exhibits fast convergence in 
frCMA as compare to standard CMA algorithms for 
convergence show in comparative Log Scale figure 10. 

The figure 10 show that when we use SNR 30db using 
algorithm frCMA minimum MSE 8.8 x 10-2 after 10 
iterations. In second case Algorithm CMA achieve MSE 
1.145 x 

 10-1 and frCMA achieve MSE. Similarly, algorithm frCMA 
convergence is extremely faster on the same parameters of 
algorithm. Again, we run both algorithms using different 
parameters, like convergence factor 0.02 for CMA and 0.01 
for frCMA algorithm. Moreover, fractional order for frCMA 
algorithm kept 0.7 in second execution. The output results 

again compare with respect to fast convergence, steady 
state condition and minimum MSE. 

 Thus, it concludes that using fix SNR 30dB frCMA 
Algorithm is fast converge and improved MSE on 10 
iteration and get minimum MSE 8.8 x 10-2 and CMA 
algorithm taking 335 iteration for convergence achieving 
MSE 0.1145. Further algorithm CMA is the worst case for fix 
SNR as well as for different SNR. The figure 10 depicts the 
fast convergence in after a few iteration and also minimum 
iteration as compare to other cases of CMA algorithm with 
same and different parameters. 

 

The performance analysis of the FrCMA and Godard CMA 
are exhibits in the analytical results of these algorithms 
with respect to alter signal to noise ratio, fast convergence 
to achieve improved results. The table 4.2 denote the CMA 
and frCMA algorithms parameters across flat frequency 
response channel (channel 1) is as follow. The difference of 
the MSE for SNR 20dB and 30dB and CMA verses frCMA are 
shown in table 2.MSE decreases in fractional order CMA 
algorithm as compare to conventional CMA algorithms with 
same parameters. 

In above figures 6, 10 disclose that when SNR increase MSE 
decrease. Moreover, SNR   inversely proportional to fast 
convergence in mention algorithms. Similarly, when we 
increase SNR 30dB and fix other parameters then frCMA 
algorithm converge after 9 iteration in fraction order 0.9 as 
exhibits in figure 10. The MSE on frCMA algorithm 8.48 x 
10-2. On the other hand, CMA algorithm using same 
parameters taking 232 iteration for convergence on the 
same time with MSE 1.227x10-1 
 

Table 2 Observation of MSE of the algorithms with fix 30dB 

SNR and variable assumed parameters for figure (6) 

S/

n 

algorit

hm 

SN

R 

μ μf U MSE 

1 CMA 

(2,1) 

Chann

el 1 

30d

B 

0.0020 0 0 3.977 

X 10-1 

2 frCMA 

(2,1) 

Chann

el 1 

30d

B 

0.0020 0.0020 0.

5 

2.136 

X 10-1 

3 CMA 

(2,1) 

30d

B 

0.0020 0 0 1.227 

X 10-1 
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Chann

el 2 

4 frCMA 

(2,1) 

Chann

el 2 

30d

B 

0.0020 0.0020 0.

5 

8.48 X 

10-2 

 

Table 3: Experimental results of algorithms with fix SNR and 

variable parameters in figure (7) 

SNR Algorithms MSE 

 

20dB 

Standard CMA 

(2,2) 

Channel 1 

frCMA (2,2) 

Channel 1 

1.8 x 10-1 

 

2.415 x 10-2 

 

20dB 

Standard CMA 

(2,2) 

Channel 2 

frCMA (2,2) 

Channel 2 

8.159 x 10-1 

 

5.705 x 10-2 

 

 

Figure 6: Comparative Learning curve for the CMA, frCMA 
algorithm

 

Figure 7: Comparative Learning curve for the CMA, frCMA 

algorithm  

Table 5: Experimental results of algorithms with fix SNR and 

variable parameters in Figure (8) 
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Chann
el 

algo
rith
m 

Ste
p 
size 

uf u SN
R 

Iterati
on 

MS
E 

Chann
el1 

CM
A 

0.05 0 0 20 78 2.1
8 

Chann
el1  

frC
MA 

0.05 0.05 0.
8 

20 20 0.1
81 

Chann
el2  

CM
A 

0.05 0 0 20 268 2.6
3 x 
10^ -

2 

Chann
el2  

frC
MA 

0.05 0.05 0.
8 

20 2 2.4
8 x 
10^-

4 

  
 

 
 

Figure 8: Learning curve for the CMA, frCMA algorithm 

 

 

 

5 Conclusion 

We precisely conclude that the fractional order Constant 
Modulus Algorithm results are improved in form of fast 
convergence. The FrCMA MATLAB results improved as 
compare to conventional CMA algorithms with increasing 
SNR as well as reducing ISI.Similarly, a smaller number of 
iterations required using fractional order Constant 
Modulus Algorithm. 

This research describes analytical comparative study of the 
Blind equalization algorithms. The core aim is optimization 
of the signal power and simultaneously combating noise 
power along with multiplicative ISI. For this purpose, we 
have used algorithms like standard CMA Algorithm, frCMA 
with varying SNR while fixing other algorithm parameters. 
In frequently used algorithms in blind adaptive class family. 
The purpose of the research to minimize the least square 
error and mean square error. Similarly, achieving fast 
convergence and steady state condition    are also our aim 
of the research.  

The chief contribution of the research is comparison of the 
transmitted signals and receiving signals using different 
algorithms with MATLAB tool results. Similarly, the result 
taken after a thousand iteration for the scrutiny of research. 
The final decision taken till to 5.705 X 10-2 minimum MSE 
as compare to all previous results.  

Finally, in some aspects on frCMA algorithms results is 
dominant as compare to other conventional CMA 
algorithms.  These results taking considering minimum 
MSE, less number of iterations required for the fast 
convergence and maximum SNR. The analytical derivation 
of the algorithms using adaptive filter. The fractional order 
algorithm applicable for next generation, fast steady state 
convergence which is the need of data communication. 
Similarly, there are some complexity which is require 
further research. 
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